Single Nucleotide polymorphisms and their relationship to codon usage bias in the Pacific oyster Crassostrea gigas.
نویسندگان
چکیده
DNA sequence polymorphism and codon usage bias were investigated in a set of 41 nuclear loci in the Pacific oyster Crassostrea gigas. Our results revealed a very high level of DNA polymorphism in oysters, in the order of magnitude of the highest levels reported in animals to date. A total of 290 single nucleotide polymorphisms (SNPs) were detected, 76 of which being localised in exons and 214 in non-coding regions. Average density of SNPs was estimated to be one SNP every 60 bp in coding regions and one every 40 bp in non-coding regions. Non-synonymous substitutions contributed substantially to the polymorphism observed in coding regions. The non-synonymous to silent diversity ratio was 0.16 on average, which is fairly higher to the ratio reported in other invertebrate species recognised to display large population sizes. Therefore, purifying selection does not appear to be as strong as it could have been expected for a species with a large effective population size. The level of non-synonymous diversity varied greatly from one gene to another, in accordance with varying selective constraints. We examined codon usage bias and its relationship with DNA polymorphism. The table of optimal codons was deduced from the analysis of an EST dataset, using EST counts as a rough assessment of gene expression. As recently observed in some other taxa, we found a strong and significant negative relationship between codon bias and non-synonymous diversity suggesting correlated selective constraints on synonymous and non-synonymous substitutions. Codon bias as measured by the frequency of optimal codons for expression might therefore provide a useful indicator of the level of constraint upon proteins in the oyster genome.
منابع مشابه
Construction and evaluation of a high-density SNP array for the Pacific oyster (Crassostrea gigas)
Single nucleotide polymorphisms (SNPs) are widely used in genetics and genomics research. The Pacific oyster (Crassostrea gigas) is an economically and ecologically important marine bivalve, and it possesses one of the highest levels of genomic DNA variation among animal species. Pacific oyster SNPs have been extensively investigated; however, the mechanisms by which these SNPs may be used in a...
متن کاملSecond-Generation Linkage Maps for the Pacific Oyster Crassostrea gigas Reveal Errors in Assembly of Genome Scaffolds
The Pacific oyster Crassostrea gigas, a widely cultivated marine bivalve mollusc, is becoming a genetically and genomically enabled model for highly fecund marine metazoans with complex life-histories. A genome sequence is available for the Pacific oyster, as are first-generation, low-density, linkage and gene-centromere maps mostly constructed from microsatellite DNA makers. Here, higher densi...
متن کاملCandidate Gene Polymorphisms and their Association with Glycogen Content in the Pacific Oyster Crassostrea gigas
BACKGROUND The Pacific oyster Crassostrea gigas is an important cultivated shellfish that is rich in nutrients. It contains high levels of glycogen, which is of high nutritional value. To investigate the genetic basis of this high glycogen content and its variation, we conducted a candidate gene association analysis using a wild population, and confirmed our results using an independent populat...
متن کاملHeritability of shell pigmentation in the Pacific oyster, Crassostrea gigas
Article history: The Pacific oyster (Crassost Received 5 November 2007 Received in revised form 12 September 2008 Accepted 18 September 2008
متن کاملFunctional analysis of Pacific oyster (Crassostrea gigas) β-thymosin: Focus on antimicrobial activity.
An antimicrobial peptide, ∼5 kDa in size, was isolated and purified in its active form from the mantle of the Pacific oyster Crassostrea gigas by C18 reversed-phase high-performance liquid chromatography. Matrix-assisted laser desorption ionisation time-of-flight analysis revealed 4656.4 Da of the purified and unreduced peptide. A comparison of the N-terminal amino acid sequence of oyster antim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gene
دوره 406 1-2 شماره
صفحات -
تاریخ انتشار 2007